Cosine Similarity

May 4, 2022

Definition: Cosine Similarity is the measure of similarity between two sequences of numbers. Mathematically this is shown as

$$
\cos (\theta)=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|}
$$

for vectors $\mathbf{A}, \mathbf{B} \in R^{n}$.
Comment: Yes, we can use trigonometric measures to explain the similarity between two documents

Let's consider the following to statements:

1. "hello world"
2. "end world hunger"

If we look at the word counts for each of these we see the following table

Word	Statement 1 Count	Statement 2 Count
world	1	1
hello	1	0
end	0	0
hunger	0	0

We can then vectorize these. Let \mathbf{A} and \mathbf{B} represent statements 1 and 2 respectively. We observe

$$
\mathbf{A}=<1,1,0,0>; \mathbf{B}=<1,0,1,1>
$$

In this case, we consider vectors in $n=4$ dimensional space.
Before we get into it, some definitions we need
Recall: Vector norm $\|\mathbf{X}\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ for $\mathbf{X} \in R^{n}$ (this represents a vectors length)
Recall: Dot product $\mathbf{X} \cdot \mathbf{Y}=\sum_{i=1}^{n} x_{i} y_{i}$ for $\mathbf{X}, \mathbf{Y} \in R^{n}$

So back in our example, using the definitions we can calculate the cosine similarity of these phrases as follows

$$
\begin{gathered}
\cos (\theta)=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|} \\
=\frac{\sum_{i=1}^{4} x_{i} y_{i}}{\sqrt{\sum_{i=1} x_{i}^{2}} \sqrt{\sum_{i=1}^{x_{i}^{2}}}}=\frac{(1)(1)+(1)(0)+(0)(1)+(0)(1)}{\sqrt{1^{2}+1^{2}+0^{2}+0^{2}} \sqrt{1^{2}+0^{2}+1^{2}+1^{2}}} \\
=\frac{1+0+0+0}{\sqrt{1+1} \sqrt{1+1+1}}=\frac{1}{\sqrt{2} \sqrt{3}}=0.4082
\end{gathered}
$$

So the cosine of the angle between these two vectors is 0.4082 , which implies $\theta=1.1503$ radians or 65.9082 degrees.

Intuitively, the closer the angle is to zero implies the more similar the vectors are. For instance, an angle of 0 implies the vectors are identical. Properties of cosine imply the closer this angle goes to 0 , the closer the cosine of the angle is to 1 . Therefore, we are looking to find cosine similarities closer to 1 for long positions and closer to 0 for short positions.

